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Quantum oscillators with nonlinear driving and dissipative terms have gained significant attention due to their
ability to stabilize cat states for universal quantum computation. Recently, superconducting circuits have been
employed to realize such long-lived qubits stored in coherent states. We present a generalization of these oscil-
lators, which are not limited to coherent states. The key ingredient lies in the presence of different nonlinearities
in driving and dissipation, beyond the quadratic one. Through an extensive analysis of the asymptotic dynamical
features for different nonlinearities, we identify the conditions for the storage and retrieval of quantum states,
such as squeezed states, in both coherent and incoherent superpositions. We explore their applications in quantum
computing, where squeezing prolongs the lifetime of memory storage for qubits encoded in the superposition of
two symmetric squeezed states, and in quantum associative memory, which has so far been limited to the storage
of classical patterns.
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I. INTRODUCTION

Quantum oscillators with high nonlinearities have recently
gained attention due to their promise to perform universal
quantum computation [1–4]. These types of systems benefit
from an infinite-dimensional Hilbert space, which allows, for
instance, autonomous quantum error correction techniques
[5–7] and fault-tolerant quantum computation [8–10]. Exper-
imental realizations of nonlinear dissipative oscillators have
also been carried out in the past decade by several groups
that were able to engineer up to five-photon dissipation us-
ing superconducting resonators devices [11–14], including
demonstrations of logical qubits encoded in oscillators of
this kind [15–17]. Moreover, there have been proposals to
use such systems as a resource for quantum machine learn-
ing algorithms where information might be encoded in the
amplitude or phase of a squeezed state [18,19]. Examples
include quantum reservoir computing [20,21] and quantum
associative memory [22].

In all the cases studied so far, the exchange of photons with
the environment, in the form of dissipation, and the nonlinear
driving have been considered to involve the same nonlinearity,
i.e., photon processes up to the same degree (where n-photon
driving and dissipation are balanced). In this regime, it is well
known that the ground state (in the case of Kerr oscillators)
[11,23] or the steady state (in the case of dissipative oscil-
lators) [3] is a catlike superposition or classical mixture (in
the presence of single-photon loss) of coherent states [2,24].
These coherences that appear in the steady state can be traced
back to the symmetry of the system, which can be weak or
strong, depending on the system parameters [25].
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In this work we explore different photon-number-exchange
processes, yielding squeezed states with distinct properties.
Our findings show (i) an extended metastable phase, par-
ticularly for two symmetrically squeezed states, enabling
prolonged qubit memory, and (ii) the system’s capability to
generate genuine quantum patterns in quantum associative
memory, highlighting its versatility.

The first main result (i) builds on previous work where bit
flips are exponentially suppressed while phase flips increase
only linearly in qubits encoded in a superposition of coherent
states [4,17]. Similar to other works where squeezed cat states
can enhance the storage time compared to coherent cat states
[10,26–28], the use of squeezed states preserves the scaling
of the two characteristic timescales of the memory when
the nonlinear degrees are not coprime. The numerical results
demonstrate that they can reduce the error rate and thus extend
the lifetime of quantum information.

The second main result of this paper (ii) extends our previ-
ous work in Ref. [22], where we showed that such systems can
be used as a quantum associative memory algorithm, as they
permit the retrieval of previously stored patterns in the form
of coherent states. Here we use genuine quantum patterns
encoded in the amplitude and phase of squeezed states. In fact,
our platform enables the storage and retrieval of truly quantum
memories [29–37]. We note also that the lower discrimination
of squeezed states for small mean photon numbers reduces
the storage capacity so that the coherent-state case is optimal
under this lens.

The article is organized as follows. In Sec. II we introduce
the master equation and review some of its properties. In
Sec. III we determine the type of symmetry (weak or strong)
of the system, depending on the (non)linearity of coherent
and dissipative terms, and in Sec. IV we study the metastable
phase that arises in the case of weak symmetry. Section V
is devoted to characterizing the squeezed states that form the
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metastable manifold of the system. All this analysis allows us
to explore two applications for these oscillators in Secs. VI
and VII. In the former we explore the capability of the sys-
tem to store quantum information over time to be used in
quantum computation [3]. In the latter we extend the proposal
introduced in Ref. [22] to implement a quantum associative
memory for pattern discrimination. We summarize the main
results of the paper in Sec. VIII.

II. MODEL

The system under study consists of a generalized
driven-dissipative nonlinear oscillator described by the
Gorini-Kossakowski-Lindblad-Sudarshan (GKLS) master
equation introduced in Ref. [22],

∂ρ

∂t
= −i[Hn, ρ] + γ1D[â]ρ + γmD[âm]ρ ≡ Lρ, (1)

where in the Liouvillian superoperator L we distinguish three
different terms. First, the unitary evolution described by the
Hamiltonian, which in the rotation frame and after the para-
metric approximation is

Hn = �â†â + iηn[âneiθ0n − (â†)ne−iθ0n]. (2)

This models an n-photon drive with n � 1, where the de-
tuning between the natural oscillator frequency ω0 and the
frequency of the driving force ωs is defined as � = ω0 − ωs.
This n-photon parametric process produces squeezing effects
for n > 1 [38] and will be called the squeezing term in the
following. The parameter ηn controls the driving strength and
φ represents its phase.

The system is also coupled to the environment through two
Lindblad dissipators D[Ô]ρ = ÔρÔ† − 1

2 {Ô†Ô, ρ}. The first
is the unavoidable linear (single-photon) dissipation typical of
oscillators of this type, Ô = â, characterized by a photon-loss
rate γ1 [39]. The second is an engineered nonlinear term with
m-photon exchange rate γm (m > 1), dissipating photons to
the environment in groups of m. A sketch of the different
nonlinear processes can be seen in Fig. 1(a). We note that
other sources of dissipation such as dephasing terms have
been excluded from the analysis.

This type of resonator has been extensively studied in
the literature when n = m [3,17,40,41]. Generalizations with
standard and higher-order Kerr terms have also been re-
ported [25,42]. Furthermore, these terms in Hamiltonians may
arise from static nonlinearities as in squeezed Kerr resonators
[43,44] or from lower-order coupled modes [45] creating pair-
cat codes. Moreover, superconducting circuits can be used to
engineer n-photon driving and dissipation terms using a single
buffer drive by modifying the flux frequency going through a
Josephson junction [12–14]. While a single buffer drive can
only implement a photon-exchange mechanism of a particular
degree n, it may be possible to couple the resonator to two
buffer drives, each with n and m-photon driving and dissi-
pation terms. Then, by increasing the strength of the desired
degree and decreasing the others, one recovers Eq. (1).

Oscillators of this kind have recently been proposed to
implement universal quantum computation and fault-tolerant
quantum computation due to their capacity to autonomously
protect the qubits from bit-flip errors [2,3,5–7]. Although

FIG. 1. (a) Sketch of the driven-dissipative nonlinear oscillator
with the three processes involved in the master equation: nonlinear
periodic driving with degree n, linear dissipation with rate γ1, and
nonlinear dissipation of degree m. The driving force pushes the
system with strength η and frequency ωs that may deviate from the
natural oscillator frequency ω0. The dissipative terms emit photons
out of the system at rates γ1 and γm for the single- and multiple-
photon processes, respectively. (b) Wigner distribution of the steady
states generated in the weak-symmetry regime with γ1 > 0. From
left to right, (n, m) = {(2, 3), (3, 4), (4, 3)}. (c) Wigner distribution
of the two steady states (corresponding to even- and odd-parity
eigenstates) present in the strong-symmetry regime with γ1 = 0 and
(n, m) = (2, 4).

phase flips still need to be corrected from photon loss, they can
be prevented using quantum error correction techniques. The
presence of only n-photon-exchange processes allows only
coherent states to be stored. In the following sections we will
see that the resonator described by Eq. (1) can be used to store
squeezed states as well as coherent superpositions of such
states. In particular, the type of state that is preserved depends
on the symmetry of the system.

In general, the results presented in the following have been
obtained by setting the parameters γ1 = 1.0, γm = 0.2, and
� = 0.4, unless specified otherwise. Also, to simplify the
notation, we will typically refer to the master equation with n-
photon driving and m-photon dissipation as a pair of numbers
(n, m).

III. SYMMETRY AND STEADY-STATE STRUCTURE

In this section we discuss the role of symmetry for Eq. (1)
and its implications for understanding and controlling its dy-
namics. We explore how symmetry can be used to design
robust quantum systems and protect against decoherence and
other forms of environmental noise [7,46]. We remark that
although the system is infinite dimensional, a cutoff of the
dimension is introduced to perform the numerical simulation.
This approximation guarantees the presence of at least one
steady state by Evan’s theorem [47,48]. Also note that the

032407-2



QUANTUM MEMORIES FOR SQUEEZED AND COHERENT … PHYSICAL REVIEW A 109, 032407 (2024)

existence of at least one steady state for n = m has been shown
analytically for infinite dimension [49,50].

In accordance with Ref. [25], the system exhibits a Zn sym-
metry when n = m, with the symmetry being weak (strong)
when γ1 > 0 (γ1 = 0). This argument can be generalized for
n �= m where, however, the absence of linear dissipation alone
does not guarantee the presence of a strong symmetry, for
which a necessary condition is that the Hamiltonian and all the
jump operators commute with Ẑp = exp(−iπ â†â/p) [51,52].
Hence,

[Ẑp, ân] = [Ẑp, âm] = 0 ⇒ p = gcd(n, m) > 1, (3)

where p determines the number of steady states in the system.
Notably, instances of strong symmetry arise when the dissipa-
tion degree m is not a coprime of n, as exemplified by cases
such as (2,4), (3, 6), or (4, 6). On the other hand, when the two
powers are coprime gcd(n, m) = 1, there is a weak symmetry
Zn such that [L,Zn] = 0, where Zn[•] = e−iπ â†â/n • eiπ â†â/n.

The symmetry allows us to block diagonalize the Liouvil-
lian by dividing its matrix into n (p2) independent sectors in
the case of weak (strong) symmetry. Specifically, for weak
symmetry, the Liouvillian can be expressed as L = ⊕n−1

μ=0 BW
μ ,

where the steady state is located within the symmetry sector
μ = 0 [51,53]. Conversely, for strong symmetry, the Liouvil-
lian takes the form L = ⊕p−1

μ,ν=0 BS
μν . The p steady states are

found in the sectors BS
μμ with μ = 0, . . . , p − 1. The other

sectors contain the coherences that will eventually decay in
the long-time limit.

In Fig. 1 we present illustrative examples of the different
steady states produced by Eq. (1). These have been obtained
numerically by solving the steady-state equation Lρss = 0
[54]. The Wigner distribution of these states allows us to
observe nonclassical phenomena as indicated by the nega-
tivity of this quasiprobability distribution [57]. On the one
hand, Fig. 1(b) shows various scenarios with weak symmetry,
characterized by a single steady state. Notably, we observe
variations in the shape of the lobes corresponding to different
photon-exchange powers. On the other hand, Fig. 1(c) exhibits
the case of (2, 4) under strong symmetry, which leads to two
steady states in the system. These steady states correspond
to even- and odd-parity cat states with squeezed states as
lobes. A similar situation can be expected for (3, 6), where
we anticipate three steady states with well-defined symme-
try eigenvalues μ = 0, 1, 2. We note that in these two cases
gcd(n, m) = n, resulting in the number of steady states being
equal to the power of the driving. However, special situations
arise when gcd(n, m) = p �= n, with p > 1. For example, in
the case of (4,6), although there are four symmetrically dis-
tributed squeezed lobes, there are only two steady states due
to p = 2. Similar to (2,4), these two steady states also have
well-defined parity with μ = 0, 1. This particular case will be
discussed in more detail in Appendix B.

In both cases, for weak and strong symmetry, we can ap-
proximate the lobes as squeezed coherent states

|α, ξ 〉 = D(α)S(ξ )|0〉, (4)

where D(α) = exp(αâ† − α∗â) is the displacement oper-
ator with amplitude α = r exp(iθ ) ∈ C. Here r ∈ [0,∞)
determines the distance from the origin and θ ∈ [0, 2π )

the displacement angle in phase space. Then S(ξ ) =
exp{−[ξ (â†)2 − ξ ∗â2]} is the squeezing operator with squeez-
ing parameter ξ = s exp(iφ) ∈ C. The magnitude s ∈ R deter-
mines the strength of the squeezing, while φ ∈ [0, π ) is the
direction in which these states have a squeezed quadrature.
We can relate the squeezing strength s to the variance of the
quadrature as

〈(�Xφ )2〉 = 1
4 e−2s, (5)

where Xφ = [â exp(−iφ) + â† exp(iφ)]/2.
By analyzing the mean-field equation (detailed in Ap-

pendix A), we can determine the phase of each lobe in phase
space (corresponding to the coherent displacement), given
by θ j = θ0 + (2 j + 1)/n for j = 1, . . . , n. Consequently, the
amplitudes of the n lobes composing the steady state are
α j = r exp(iθ j )n

j=1, where r is approximated by Eq. (A2). A
mean-field approximation does not capture squeezed fluctua-
tions, but looking at the direction of the smallest quadrature
of the lobes in Fig. 1(b), we appreciate that when n > m
the states are phase squeezed and when n < m the states are
amplitude squeezed. Thus, taking into account the phase of
the lobes θ j , we get

ξ j = s exp[i2θ j + i�(n − m)π/2], j = 1, . . . , n, (6)

where �(x) is the Heaviside function, which is one for x > 0
and vanishes otherwise. The case n = m is the previously
studied case with no squeezing (s = 0) [22]. Here we assume
r and s are the same for each lobe due to the rotational
symmetry of the system.

The steady state of the system in the presence of weak
symmetry is then a classical mixed state of the lobes, so

ρW
ss = 1

n

n∑
j=1

|α j, ξ j〉〈α j, ξ j |. (7)

In contrast, when the system has strong symmetry, we are left
with p steady states which are coherent superpositions of the
lobes. An example of such a state is the one belonging to the
μ = 0 symmetry sector

ρS
ss = ∣∣ψS

ss

〉〈
ψS

ss

∣∣, ∣∣ψS
ss

〉 = 1√
n

n∑
j=1

|α j, ξ j〉. (8)

Throughout the rest of the article, we work mainly in the
weak-symmetry regime with γ1 > 0, which corresponds to the
most physical scenario.

IV. METASTABILITY

For a system described by the GKLS master equa-
tion ∂tρ = Lρ [58,59], the dynamics can be understood in
terms of the set of complex eigenvalues {λ j} of the (non-
Hermitian) Liouvillian superoperator L and of the right
({Rj}) and left ({Lj}) eigenvectors, obeying LRj = λ jR j and
L†Lj = λ∗

j L j , respectively, with normalization tr(L†
j Rk ) = δ jk

[53]. Then, assuming the presence of at least one steady
state ρss with λ1 = 0 (which is always true in finite dimen-
sions [47,48]), the time evolution of a state ρ(0) can be
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decomposed as

ρ(t ) = ρss +
∑
j>1

tr[L†
j ρ(0)]eλ j t R j, (9)

where for convenience the eigenvalues are sorted such that
0 � Reλ j � Reλ j+1.

As discussed in [53,60], in open quantum systems,
metastability typically arises as a consequence of a separation
between two consecutive eigenvalues of the Liouvillian, i.e.,
τl � τl+1 where τ−1

l = −Reλl , and it is closely related to
the emergence of quantum entrainment and dissipative phase
transitions [61]. In the presence of metastability, fast dynam-
ics (t < τl+1) is well separated from the slow metastable
phase (t > τl+1). After the relatively fast transient τl+1,
the system decays into the metastable manifold whose size
depends on the number of slowly decaying modes. The emer-
gence of a metastable phase, which isolates l modes from
the rest, enables us to confine the system dynamics within
this metastable manifold spanned by the right eigenmodes
{Rj}l

j=1 of the Liouvillian [60,61]. Specifically, after the ini-
tial decay (t > τl+1), the system’s state can be expressed as
a complex linear combination of only the aforementioned
eigenmodes. Finally, a decay to the steady state occurs for
times t > τ2.

Metastability is seen in the Liouvillian of Eq. (1) when
there is linear dissipation (weak symmetry) and the nonlinear
powers are balanced (n = m) [22,25,61]. In the following
we remove the latter constraint while staying in the weak-
symmetry limit γ1 > 0. Given the large number of parameters
and regimes of the model, for the sake of clarity, we consider
Liouvillians with at most four-photon driving exchange n and
we modify the power of the dissipation m to be above and
below that of the driving. Moreover, we compare with the
coherent-state situation n = m to study in which situation
squeezing can improve the performance of certain applica-
tions.

One of the first properties to analyze is the length of the
metastable phase. For that we recall that in the balanced situa-
tion the separation in the Liouvillian spectrum occurs between
the eigenvalues n and n + 1, where n is the degree of the driv-
ing term [22]. Furthermore, the separation between the two
eigenvalues increases for large ηn and small γn. Both of these
properties remain valid in the unbalanced situation n �= m, but
the scaling of the separation with respect to the ratio ηn/γm

is different for each case (see Appendix A). Consequently,
to compare the different cases, we use the parameter 〈n̂〉ss =
tr(n̂ρss) corresponding to the mean photon number of the n
lobes forming the steady state [Eq. (7)].

In Figs. 2(a) and 2(b) we show the ratio between the real
parts of the eigenvalues λn and λn+1, which relates to the
Liouvillian separation. The smaller the ratio, the longer the
metastable phase. In this sense, we see the ratio decreasing
exponentially with the photon number, as Reλn → 0− and
Reλn+1 → −∞. The behavior is the same for all powers (in-
cluding n = 4, which is not shown), but the slope of the curves
changes drastically. In general, for n > 2, having different
power between the driving and the dissipation reduces the
eigenvalue separation, leading to a shorter metastable phase.
This is not the case for n = 2, where both situations with

FIG. 2. Ratio between the eigenvalues λn and λn+1 defining the
Liouvillian separation for (a) n = 2 and (b) n = 3. Line styles corre-
sponding to the m values in the top right inset. (c) Scale factor k (see
the text) of the spectral separation with the photon number, obtained
by fitting the lines in (a) and (b) to an exponential function.

m > n (m = 3 and m = 4) result in a larger separation for the
same mean photon number.

The slope of the curves can be used to better compare the
different scenarios. For that we calculate the scaling factor k
of the separation with the mean photon number in Fig. 2(c).
This has been obtained from an exponential fit of the lines
in Figs. 2(a) and 2(b) as 10b〈n̂〉ss a, where a and b are the
fit parameters that relate to the scale factor as k = 10b. We
can see that squeezing in the presence of two lobes improves
the metastable time. The worst scaling occurs for n = 4 and
m = 6, which is related to the different distribution of the
Liouvillian spectra. More details can be found in Appendix B.
Also, although the case (2,1) is shown in this type of figure,
it has not been studied since the single steady state is a
squeezed-vacuum state with no metastability.

The appearance of the metastable phase pauses the dynam-
ics of the system, which can be described by only the slowest
n modes. However, the eigenmodes {Rj}n

j=1 themselves are
not valid quantum states since they are traceless. The quantum
states that span the metastable manifold are known as extreme
metastable states, which we will denote by {μ j}n

j=1. They
can be constructed using the extreme eigenvalues of the left
eigenmodes {Lj}n

j=1 as μ j = ∑n
a=1 cM,m

a Ra, where cM
a and cm

a
are the maximum and minimum eigenvalues of La. Of course,
the contribution of the steady state (a = 1) is maximal since
L1 = I, so cM

1 = cm
1 = 1. This gives the unit trace condition

to the extreme metastable states. The other coefficients can
be chosen as those that minimize the classicality condition
[62]. Notably, we found that the combination of eigenmodes
is the same for all values m (for a fixed driving degree n). The
actual expression can be seen in the Supplemental Material of
Ref. [22].

Using this method, we isolate the n lobes that form the
steady state (see Fig. 1), which correspond identically to the n
extreme metastable states. In this way, the steady state can be
reconstructed as ρW

ss = (1/n)
∑

j μ j , like in Eq. (7).
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FIG. 3. (a) and (b) Evolution of the Mandel Q parameter for increasing value of the average photon number. We distinguish between
dissipative powers (a) below the driving degree (m = n − 1) and (b) above (m = n + 1). Probability distributions (c) (4,3) and (d) (4,5) of the
steady states marked by crosses in (a) and (b), respectively. The black solid line corresponds to the distribution of a steady state as a mixture of
n squeezed states. The red dashed line corresponds to the probability distribution of a coherent state with the mean photon number shown. The
super- and the sub-Poissonian character of the states are identified given the larger and smaller variance of the bars in (c) and (d) respectively.
(e) Mandel Q parameter for large average photon number 〈n̂〉ss � 1.

V. CHARACTERIZATION OF SQUEEZED STATES

We have seen in Sec. III that the steady state of the os-
cillator is formed by n symmetrically distributed lobes which
are, depending on the symmetry, entangled (strong) or mixed
(weak). In both cases, the number of lobes is determined
by the squeezing degree n. The power of the dissipation,
however, modifies the shape of such states. While it is well
known that coherent states can be obtained for equal non-
linear powers (n = m) [33,40], for n �= m the states become
squeezed. Squeezing is a well-known quantum phenomenon
in which quantum states have quantum fluctuations below the
shot-noise level of coherent states in one quadrature of the
field. It is related to sub-Poissonian statistics, characterized
by Mandel’s Q parameter [63,64]

Q = 〈(�n̂)2〉 − 〈n̂〉
〈n̂〉 . (10)

Quantum states can be classified into sub-Poissonian (−1 �
Q < 0) and super-Poissonian (Q > 0). Coherent states have
Q = 0 since the photon-number distribution follows a Pois-
son distribution with a mean photon number equal to their
variance.

By considering the steady state of the system obtained nu-
merically by solving Lρss = 0 in the weak-symmetry regime
(γ1 = 1), we proceed to evaluate Mandel’s parameter. It is
noteworthy that we can directly compute Q using the steady
state itself. This holds because the operator n̂ commutes with
the symmetry operator Ẑn.

In Fig. 3 we study the cases where the dissipation degree m
is one below [Figs. 3(a) and 3(c)] or above [Figs. 3(b) and
3(d)] the driving power n. First, in Figs. 3(a) and 3(b) we
plot the evolution of Q as the mean photon number of the
steady state increases. We recall that the mean photon number
is related to the ratio ηn/γm as obtained from the mean-field
analysis [Eq. (A2)]. More details on this can be found in
Appendix A.

These figures illustrate two distinct scenarios: For m =
n − 1 the states exhibit super-Poissonian behavior, while for

m = n + 1 the states display sub-Poissonian statistics (for
〈n̂〉ss > 5). This distinction becomes evident when examining
Figs. 3(c) and 3(d), which depict the photon-number probabil-
ity distribution for the steady states represented in the insets in
Figs. 3(a) and 3(b), respectively. The probability distribution
of a coherent state with the same mean photon number 〈n̂〉ss

as the squeezed state is also included as a red dashed line for
comparison. We find that the states arising from m = n + 1
correspond to amplitude-squeezed states, characterized by
sub-Poissonian statistics. Importantly, this behavior extends
to other values of m where m > n. For the case m = n − 1,
however, we cannot draw definitive conclusions about the
classicality of the states. It is the analysis of the Wigner
distribution that shows that they exhibit phase squeezing,
suggesting the need for alternative techniques to accurately
determine their nature.

In Fig. 3(e) we present the values of the Mandel param-
eter attained for large mean photon numbers (〈n̂〉ss � 1).
These values are computed as the average of Q when 〈n̂〉ss ∈
[20, 30].1 Additionally, we include the corresponding values
for the case of n = m, representing coherent states, and m =
n + 2, which also leads to sub-Poissonian statistics. Studying
the figure, we can discern that the degree of sub-Poissonianity
diminishes as n increases, while it intensifies with growing m.

Although the Mandel Q parameter allows us to distinguish
between states with sub- and super-Poissonian statistics, it
does not provide information about the extent of squeezing
in a direction different from the amplitude. Concretely, for the
phase-squeezed states we encounter when n > m, this needs
to be extracted from the variance of the quadrature operator
(5). The angle φ is given by the direction of minimal squeez-
ing, which can be related to the angle of the lobes in phase
space as in Eq. (6).

1The variance of this mean vanishes in most cases since Q is
constant for these large values of the mean photon number.
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FIG. 4. Quadrature variance of the extreme metastable states for
the (a) phase and (b) amplitude squeezed states for m = n − 1 and
n + 1, respectively. The squeezing angle corresponds to the phase
of each lobe in phase space, with an extra phase factor of π/2
for amplitude squeezed states. The markers show the quadrature
squeezing obtained from fitting the numerical steady state with
Eq. (7). (c) Quadrature variance 〈(�X )2〉 on average for large 〈n̂〉ss ∈
[20, 30]. (d) and (e) Wigner representation of the metastable state μ1

(θ1 = π ) for n = 3. The mean photon number of the lobes, from left
to right, corresponds to 〈n̂〉ss = 4, 8, 12, 16. We appreciate (d) the
phase squeezing and (e) the amplitude squeezing, which leads to the
phase factor π/2.

To analyze the squeezing properties of the metastable
states, we computed the variance of the quadrature operator
in the direction of minimal squeezing for each state. The
obtained values, presented in Fig. 4(a), represent the average
variance over all lobes. It is important to note that, due to
the rotational symmetry of the system, the quadrature variance
and the associated squeezing parameter s are the same for all
lobes (up to numerical precision). Moreover, as the lobes are
in general mixed states which may deviate from pure coherent
squeezed states, we performed a fitting procedure to determine
the parameter s by matching the steady states with the mixed
state given in Eq. (7). The results of the fitting process are
depicted as markers in Fig. 4(a). This fitting approach helps
determine the nature of the extreme metastable phases since
a lower variance than for coherent states in a given direc-
tion does not necessarily indicate that the states are squeezed
coherent states. In this way, we can assess how closely the
numerical steady states resemble the expected mixed-state
superposition of symmetrically distributed squeezed coherent
states in Eq. (4).

In all the cases examined, we find that the quadrature
variance is smaller than that of coherent states [〈(�Xcoh )2〉 =
0.25]. The lowest quadrature variance is observed in the case

(3,2). However, it should be noted that the metastability win-
dow is practically nonexistent for small values of 〈n̂〉ss (refer
to Fig. 2). In this regime, the deviations from classical be-
havior are significant, indicating that the dynamics cannot be
adequately described by considering only the first n modes.
Concretely, in Fig. 4(d) we show the Wigner distribution of
the extreme metastable state corresponding to θ1 = π , con-
structed using the extreme eigenvalues as explained. This
state, for a small photon number, contains negativities and
lacks a well-defined direction of squeezing. For larger ampli-
tudes, it becomes possible to accurately construct the lobes
and calculate the quadrature variance, which reaches a value
of 0.15 (corresponding to −2.21 dB). Additionally, Fig. 4(e)
shows the complementary scenario (3,4). The Wigner distri-
butions for various mean photon numbers (〈n̂〉ss = 4, 8, 12,
and 16) are displayed. Unlike the previous case, the lobe can
already be discerned for the smallest photon number. How-
ever, a significant discrepancy is observed when comparing
the quadrature fluctuations obtained from the lobe [repre-
sented by the pink bar in Fig. 4(b)] with those obtained using
the fitting procedure (indicated by the square marker). This
discrepancy suggests that the state is not accurately described
by Eq. (4) until 〈n̂〉ss � 8. In the other cases, the fit reaches a
close value when compared to the direct computation of the
quadrature fluctuations. Thus, the validity of the approxima-
tion of the metastable states by pure squeezed coherent states
is proved.

Similar to our observation in Fig. 3, where the Mandel
parameter reaches a stable value for large photon numbers, we
find that the quadrature variance also stabilizes as the photon
number increases. We plot this convergence value in Fig. 4(c),
obtained by averaging 〈(�X )2〉 for 〈n̂〉ss = 20, . . . , 30. As
expected, coherent states are only obtained when n = m, in-
dicating a balance between driving and dissipation. However,
we can consistently generate squeezed states when the driving
and dissipation degrees differ. Furthermore, in this limit of
large photon number, it is worth noting that the magnitude
of the squeezing is solely determined by the powers n and
m and remains invariant for changes in the other oscillator
parameters (γ1 or �).

VI. MEMORY LIFETIME

In this section we investigate the feasibility of using the
resonator as a storage medium for squeezed and cat states.
We focus again on the case of weak symmetry, commonly
observed in experiments due to linear losses of bosonic sys-
tems. In this regime, as mentioned before, the stationary state
is an incoherent superposition of lobes, but cat states can still
be displayed in the metastable transient allowing for efficient
quantum state storage. We focus on evaluating two key prop-
erties: the relaxation and dephasing time. These measures are
commonly employed in quantum computation to assess the
memory’s ability to retain information over time [2,3,9,17].
The relaxation (or bit-flip) time is the time it takes for a lobe
to decay to the steady state, while the dephasing (or phase-flip)
time is the time it takes for coherences to vanish.

In the context of bosonic memories, the bit-flip time is
defined as the decay time required for a lobe |ψk〉 to lose
all information about its initial state, resulting in the system
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reaching the fully mixed state I = ρss = (1/n)
∑

k |ψk〉〈ψk|.
Here we assume that the extreme metastable phases form
an n-dimensional computational basis. For coherent states
(n = m = 2), experimental studies have demonstrated an ex-
ponential increase in the bit-flip time as a function of the mean
photon number. Conversely, the phase-flip error rate exhibits
a linear dependence on 2〈n̂〉/T1, where T1 is the resonator
lifetime [4,17].

For the quadratic driving, the quantities evaluated in the
following sections are equivalent to the bit-flip and phase-flip
times studied in the literature. In particular, the computational
basis (Z eigenvectors) consists of the lobes {| + α, ξ 〉, | −
α, ξ 〉} and the even (odd)-parity cat states correspond to the
positive (negative) eigenvector of the X operator.2 For higher
driving degrees, we will straightforwardly extend the meaning
of these two quantities to qudits without imposing a particular
qubit encoding in each case (see Ref. [3] for mappings taking
states generated with n = 4 onto a two-dimensional Bloch
sphere). While better encodings may lead to longer storage
times, we want to compare the possible advantage of using
squeezed states over coherent states with the same nonlin-
earity in the driving. This can already be seen in the simple
scenario as more complex encodings are still limited to the
relaxation of the lobes. The only exception is the case (4,6)
due to the special symmetry of the system, as we will see.

A. Relaxation time

To calculate the relaxation time, we compute the full mas-
ter equation evolution for each state in the computational
basis, i.e., {μk}n

k=1. At each time step, we measure the ex-
pectation value of â, which asymptotically approaches zero as
Tr(âρss) = 0. Thus, the relaxation time, denoted by Trel, is ob-
tained by fitting the absolute value3 of 〈â〉 to an exponentially
decaying function exp(−Trelt ). In most cases, this decay time
is expected to be determined by the Liouvillian spectral gap,
denoted by τ−1

2 = −Reλ2, which represents the decay time of
the slowest eigenmode.4

To explore the scaling behavior with increasing lobe sep-
aration, we perform this fitting procedure for several values
of the mean photon number 〈n̂〉ss. In our analysis, we fix the
dimension of the Hilbert space to dim H = 50 to ensure an
accurate representation of the dynamics over a range of mean
photon numbers from 2 to 20.

The results are presented in Fig. 5, where Figs. 5(a)–5(c)
depict the relaxation time Trel as a function of the mean photon
number of the steady state. Each data point represents a fitting
procedure applied to the decay time of 〈â〉 obtained from a
full master equation evolution, using the lobes as initial states.
Additionally, Fig. 5(d) showcases three specific trajectories

2There might be some discrepancy compared to some works where
the Bloch sphere rotates around the Y axis so cat states are the logical
qubits instead of the lobes themselves [8,11].

3We could also use the real part or the absolute value of the opera-
tor.

4We note that, in general, and in contrast with our model, the
knowledge of the Liouvillian eigenvalues may not be sufficient to
determine the timescales of a system [65–67].

FIG. 5. (a)–(c) Logarithmic plot of the relaxation time γ1Trel over
the mean photon number of the steady state for (a) n = 2, (b) n = 3,
and (c) n = 4. The markers are obtained by fitting the time evolution
of |〈â〉| to an exponentially decaying function (error bars are smaller
than marker size). The lines correspond to the decay time of the
spectral gap λ2. (d) Example full master equation evolution of |〈â〉| (y
axis) for an initial state corresponding to the lobe |ψ0〉 with 〈n̂〉 = 9
(dim H = 50). Each line corresponds to a different driving degree n
where we fixed the relation with the dissipation degree to m = n + 1.
We obtain relaxation times of 1.41 × 105, 70, and 1.1 (units of γ1)
for n = 2, 3, and 4, respectively. (e) Scale factor of the relaxation
with respect to the number of photons, obtained by fitting the data in
(a)–(c) to an exponential function.

with 〈n̂〉 = 9 and different driving degrees (n = 2, 3, 4), re-
sulting in relaxation times on the order of 105, 102, and 1,
respectively. It is important to note that the error in estimating
the relaxation time is less than 10−3 in all cases, with a cor-
relation coefficient between the data and the fitting function
r2 ∼ 1–10−6.

In these figures, we also include the decay of the spectral
gap in lines of different strokes for each value of m (dotted
for n − 1, solid for n, dashed for n + 1, and dash-dotted for
n + 2). We appreciate that the relaxation time obtained from
the full master equation evolution is equivalent to the decay
time of the spectral gap. Hence, the evolution can be fully
understood from the Liouvillian eigenvalues.

We note that in most cases Trel grows exponentially with the
mean photon number. This behavior is well known and has
been experimentally demonstrated for coherent states (n =
m = 2) [4], and we show that it remains valid for squeezed
states with n �= m. In Fig. 5(e) we can see the scale factor K
of Trel with the mean photon number obtained by exponen-
tially fitting the data points in Figs. 5(a)–5(c) to Trel = xK 〈n̂〉ss .
Notably, for n = 2, the presence of squeezing can significantly

032407-7



LABAY-MORA, ZAMBRINI, AND GIORGI PHYSICAL REVIEW A 109, 032407 (2024)

FIG. 6. (a) Full master equation evolution of the parity operator
for a cat state with even parity and 〈n̂〉 = 9 in a resonator with driving
degree n = 2 and dissipation degree m = 2 (red solid line) and m = 3
(blue dotted line). The phase-flip error rate calculated by fitting the
lines to an exponentially decaying function is shown in the legend.
(b) and (c) Wigner distribution of the states at times corresponding,
from left to right, to the vertical dashed lines in (a), for (b) m = 2 and
(c) m = 3.

enhance the bit-flip time of the resonator, with a scale factor of
K = 6.4 for m = 3. This is in agreement with previous results
where squeezing can enhance the storage time of a qubit
[26–28]. In general, however, squeezing is counterproductive
in both amplitude and phase. The longer relaxation time for
n > 2 is obtained when both nonlinearities are equal. The sig-
nificant reduction in storage time observed is a consequence
of the lobes becoming increasingly indistinguishable as their
number grows. In other words, a higher photon number is
required to resolve the lobes with the same precision as in
the case of n = 2. This effect is further amplified by the pres-
ence of amplitude squeezing, which diminishes the separation
between the lobes.

B. Dephasing time

We proceed to evaluate the dephasing time, which quanti-
fies the duration for a superposed state to lose its coherences.
In our analysis, we adopt an approach similar to that for
the relaxation time. We consider the n-cat states {|C(n)

μ 〉}n
μ=1,

derived from the n lobes, as our initial states. These n-cat
states exhibit well-defined parities, denoted by p, which cor-
respond to the symmetry eigenvalues associated with each
state. By investigating the expectation value over time of the
projector P̂μ = ∑�D/n�

a=0 |an + μ〉〈an + μ| associated with the
symmetry sector p, we observe that the expectation value pro-
gressively decays. Eventually, when the probability of finding
the state within that sector reaches 1/n (fully mixed states),
all coherences are lost. The fitting of this decay to 〈P̂μ〉 =
[(n − 1) exp(−�dept ) + 1]/n determines the dephasing error
rate �dep.

An example can be seen in Fig. 6(a) for n = 2, where
we take as the initial state the even cat state |C0〉 = (|α〉 +

FIG. 7. Dephasing error rate �dep/γ1 as a function of the mean
photon number for n = 2, 3, and 4 and (a) m = n + 1 and (b) m =
n + 2. The markers are obtained by fitting the decay of the corre-
sponding block observable P̂μ to an exponential function as in Fig. 6.
(c) Slope y obtained from a linear fit �dep = x + y〈n̂〉 of the lines in
(a) and (b).

| − α〉)/
√

2 that populates only the even energy levels of the
oscillator. Then the evolution of the even-parity operator P̂0

indicates the decay of the coherence, which is lost at times
0.01γ1 and 1γ1 for m = 3 and 2, respectively. The Wigner
representation of the states at particular times is shown in
Figs. 6(b) and 6(c) for the two dissipation degrees. The pres-
ence of coherence can be appreciated in the negative fringes
in the center of the Wigner distribution which decay faster
in the presence of squeezing. The values of the phase-flip
error rate �dep = 1/Tdep for the two trajectories in Fig. 6(a)
are �m=2

dep = (1.71472 ± 0.00016)γ1 and �m=3
dep = (316.82 ±

0.20)γ1, so the cat state stored in the balanced situation re-
mains in memory longer than in the unbalanced case.

A more complete analysis for more combinations of n and
m is done in Fig. 7, where we also compute the dephasing rate
for different values of the mean photon number. We find that
cat states survive longer in a resonator with n = m. We also
find a consistent linear relationship between the dephasing er-
ror rate and the mean photon number, similar to the cases n =
m, indicating that states with more photons are more sensitive
to noise. However, the slope of the curves differs drastically
depending on the relation between the two degrees n and m.
As can be seen in Fig. 7(c), we show the slope y obtained
from a linear fit �dep = x + y〈n̂〉 of the lines in Figs. 7(a)
and 7(b) (as well as from the data obtained for the lines not
shown). Essentially, when n and m are coprime, the dephasing
error rate increases very fast with the mean photon number
with slopes of up to four orders of magnitude larger than the
corresponding coherent-state cases. Instead, if gcd(n, m) > 1,
we obtain a much smaller scaling comparable to the situ-
ations with n = m. For instance, for a driving degree of 2,
we have �dep = 2γ1 for both m = 2 and m = 4. This result is
compatible with the theoretical scaling of the dephasing rate
[4]. Hence, even though we are in the weak-symmetry regime
where cat states are not the steady states of the system, during
the metastability window, an effective decoherence-free sub-
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space appears in the metastable manifold that freezes the dy-
namics until the decay to the single steady state [68]. The
fact that only the linear dissipative term mixes the symmetry
blocks allows us to maintain coherent superpositions for a
longer time. Another example of this phenomenon, which is
not shown in Fig. 7, is the case of n = 3 and m = 6. There
we obtain a slope of the dephasing rate equal to 1.84 ± 0.03,
which is close to the scaling found for n = m = 3.

The most notable situation is when n = 4 and m = 6,
which has gcd(4, 6) = 2. Thus, the corresponding strong-
symmetry case (γ1 = 0) has only two steady states consisting
of a combination of even and odd four-cat states. Conse-
quently, if we were to directly compute the dephasing rate for
the four four-cat states, we would see a very fast decay of
these states to one of the two stable steady states. The chosen
state depends on the symmetry eigenvalue of the initial one,
that is, the four-cat states with eigenvalues 0 and 2 (1 and
3) converge to the steady state with even (odd) parity. In the
weak-symmetry regime (γ1 > 0), the number of metastable
states depends on the mean photon number 〈n̂〉ss: two for small
values coinciding with the strong-symmetry steady states and
four for large values corresponding to the lobes. Hence, this
resonator, for the particular values of 〈n̂〉ss considered, is
much more useful to store two-dimensional qubits. Indeed, in
Fig. 7(c) the slope of the dephasing error rate corresponds to
the storage of even- and odd-parity states. For more details on
this particular case, see Appendix B.

VII. QUANTUM ASSOCIATIVE MEMORY

In our previous work [22] we demonstrated the applica-
bility of these oscillators in pattern classification within the
framework of quantum associative memory focusing on the
balanced configuration n = m. By leveraging the metastable
phase, where the lobes function as attractors of the system
dynamics, we successfully discriminated initial states into n
coherent states, which served as the memories for storing
information. Building upon this approach, we now extend
it to incorporate squeezed states, enabling the encoding of
information within the four degrees of freedom of a squeezed
coherent state (4). The encoding leads to a state that most
closely resembles one of the n memories in the metastable
phase k̄. During the metastable phase, the system dynamics
will converge with a high probability to the desired state if
the initial separation from the other lobes is negligible. Then
a phase-shifted measurement for squeezed states allows ex-
traction of the lobe k to which it has converged to assert the
probability P[k̄ = k] that it went to the correct memory.

For our numerical simulations, we consider an initial
squeezed coherent state |β, ζ 〉, where |β|2/〈n̂〉ss ∈ [1/2, 2],
|ζ | ∈ [0, 1], and the phases are randomly chosen from the
intervals [0, 2π ] and [0, π ] for each respective complex value.
To determine the closest memory lobe, we calculate k̄ =
arg mink=1,...,n||μk − |α, ζ 〉〈α, ζ |||, where μk represents the
kth memory state.

Using the squeezed coherent state as the initial state, we
perform a Monte Carlo simulation based on the master equa-
tion (1). The simulation is run for a time long enough to
ensure the state penetrates into the metastable transient. At
this point, we measure the state using the positive-operator-

valued measure (POVM) {� j = |α j, ξ j〉〈α j, ξ j |}n
j=1 and �? =

I − ∑
j � j that is used for phase-shifted squeezed state dis-

crimination and represents a natural extension to the POVM
used in [22].

The success probability of correctly identifying the lobe for
a single trajectory is given by

P[k̄|τn < t < τ2] = 1

τ2 − τn

∫ τ2

τn

dt tr[�k̄ρ(t )], (11)

where ρ(t ) is the density matrix at time t . To obtain reliable
statistics, we repeat the entire procedure for different initial
states, generating 500 realizations, and calculate the average
success probability over these realizations.

In Fig. 8 we show the success probability for an oscillator
with mean photon number 〈n̂〉 = 4, 8, 12, and 16. The error
bars correspond to the standard deviation of the success prob-
ability that is averaged for the 500 trajectories. We include
a horizontal black line that represents the success probability
one would obtain by randomly guessing the lobe, that is, 1/n.
In other words, the state is a statistical mixture of all lobes
[see Eq. (7)].

In general, we can see that the success probability tends
to increase as the mean number of photons increases. This is
expected since the discrimination between the lobes improves
the further they are from the center and each other. Moreover,
in the large-amplitude regime, the metastable states are well
approximated by squeezed states, as we saw in Sec. V. Thus,
the POVM used for state discrimination of squeezed states is
optimal.

Another characteristic is that patterns made of squeezed
states (n �= m) have a lower success probability than coher-
ent states (n = m) except for n = 2, where the cases m >

n outperform the latter. This is the same behavior we saw
previously in Secs. IV and VI. These two cases with m =
3 and m = 4 had a longer metastable phase, which led to
longer bit-flip times. In this case, the squeezed lobes achieve
a success probability near one for 〈n̂〉 � 8 with the coherent-
state results slightly below them. However, this trend changes
when considering different values of n. Figure 8(b) reveals
that when m = n + 1 (amplitude-squeezed states), a higher
success probability is obtained compared to other squeezing
cases. On the other hand, Fig. 8(c) shows that the highest suc-
cess probability (excluding the n = m scenario) is observed
when m = n − 1 (phase-squeezed states). This discrepancy
arises because amplitude-squeezed lobes exhibit a smaller
distance between them when n = 4 compared to the case of
n = 3, as more states must fit within a fixed photon num-
ber. The least favorable scenario occurs in (4, 6), where the
success probability is comparable to random guessing be-
cause the lobes are not the metastable states.5 Also, when
the driving and dissipation degrees are 3 and 2, respectively,
the lobes are not well characterized by squeezed states unless
〈n̂〉 � 16 (see Sec. V), which reduces the success probability

5As explained in Appendix B, the four lobes are not the metastable
phases, so a different encoding would be needed to encode only two
patterns in the even- and odd-parity states spanning the metastable
manifold.
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FIG. 8. Success probability for measuring the correct lobe starting from an initial squeezed coherent state with random amplitude and
squeezing parameter for (a) n = 2, (b) n = 3, and (c) n = 4. Each box is obtained from an average of 500 Monte Carlo trajectories with
different initial states. The lower and upper sides of the box correspond to the first and third quartiles, respectively, and the inner line denotes
the mean probability of success. The position of the whiskers is 1.5 of the interquartile range; points lying outside this range are shown as dots.
The horizontal black line corresponds to the success probability of randomly guessing the lobe, i.e., 1/n.

for smaller mean photon number. Nevertheless, the highest
success probability is reached for coherent states with three
and four patterns.

It should be noted that the cutoff set for the amplitude and
squeezing of the initial states also affects the performance
of the associative memory. In this study we have limited the
minimum amplitude of the lobes, setting it to

√〈n̂〉/2. This
criterion serves to exclude from the analysis states which
are equally spaced from all the lobes and lead to a success
probability of 1/n. Nevertheless, one can note in Fig. 8 that
whiskers and outliers points arrive on several occasions at the
random guessing success probability. Similarly, the maximum
squeezing has been limited to 1 (−8.68 dB), which already al-
lows for the application of quantum key distribution protocols
[69] but may negatively affect the performance depending on
its direction. For instance, an amplitude-squeezed state with a
large squeezing parameter might overlap two lobes.

We recall that in associative memories, the storage capacity
is defined as the number of memories stored in the system
over its dimension. This quantity has a classical bound of αc =
0.138 for an all-to-all network of binary neurons (commonly
known as a Hopfield neural network) [70,71]. This limit has
not yet been surpassed by the quantum version of the Hop-
field network made of spin- 1

2 units [37,72], although quantum
systems promise to store an exponentially large number of
patterns [73]. In Ref. [22] we showed that by optimizing the
amplitude of the lobes one can overcome the classical bound
and reduce the dimension of the Hilbert space needed to store
a given number of patterns. In the presence of squeezed states,
the storage capacity can be enhanced for amplitude-squeezed
states as they can be described using a smaller Hilbert space.
However, the capacity to distinguish the patterns is highly
affected by small mean photon numbers. Hence, the combi-
nation of the two factors makes coherent-state storage more
optimal in terms of storage capacity for n > 2.

VIII. CONCLUSION

In this work we studied several dynamical properties of
a quantum oscillator with driving and dissipative terms that
exchange photons with the environment in packets of n and m
particles. A rich scenario of dynamical behaviors was reported
in connection with different symmetries and spectral features
of the Liouvillian. This led to the possibility of obtaining
steady states with symmetrically phase-distributed lobes that

can be characterized as squeezed coherent states, especially
for high driving strength and small nonlinear dissipation rate.
We have seen that a higher driving degree leads to phase-
squeezed states, while a higher dissipation degree leads to
amplitude-squeezed lobes.

In terms of the metastable phase, when linear damping
is counted, we have seen that the lobes are well approxi-
mated by squeezed states when the driving degree is equal
to the dissipation degree. This is the case for coherent states
(n = m) and phase-squeezed states (n = m + 1). In the case
of amplitude-squeezed states (n = m − 1), the lobes are not
well approximated by squeezed states unless the mean photon
number is large enough. This is because the lobes are closer to
each other and the squeezing parameter must be large enough
to distinguish them.

We have analyzed two applications of the oscillator well
suited to the metastable regime. The first one is the storage
of quantum states where we have characterized the relaxation
and dephasing times of qudits stored in the metastable phases.
We have seen that the relaxation time for squeezed states is
longer than for coherent states for n = 2. This is because the
lobes are farther apart from each other and the spectral gap is
larger. Moreover, while the phase-flip error rate is expected to
grow linearly with the mean photon number, we have obtained
an exponential scaling when the two nonlinear degrees are
coprime. Conversely, the dephasing error rate scaling when
gcd(n, m) > 1 remains linear even in unbalanced situations
where the scale factor with the mean photon number can
be improved in some cases as compared to balanced models
(n = m). Hence, coherences between states disappear at the
same or a smaller rate than for coherent states.

The second application is quantum associative memory
where the same system in the metastable regime is used
to recognize (squeezed-state) memories. Following from the
results of Ref. [22], we analyzed the possibility of storing
and retrieving genuine quantum states and computed the
success probability of pattern discrimination for the differ-
ent driving and dissipative degrees. We have seen that in
general amplitude-squeezed states are a better option than
phase-squeezed states to store the patterns. Nevertheless, pat-
terns encoded in a coherent state allow attaining a high
success probability for a smaller mean photon number (sys-
tem size). This shows the possibility of using such memories
for practical purposes. For instance, in discrete modulated
continuous-variable quantum key distribution [74,75], the

032407-10



QUANTUM MEMORIES FOR SQUEEZED AND COHERENT … PHYSICAL REVIEW A 109, 032407 (2024)

information encoded in squeezed coherent states can be
distorted due to the transmission channel [76]. Quantum
associative memory can be used to retrieve the original in-
formation.

Our primary emphasis centered on exploring how squeez-
ing could potentially be employed to improve the capabilities
of our driven-dissipative oscillator in storing and retrieving in-
formation problems. The resonator, however, has the potential
to be used for more tasks including quantum error correction
[1,5,27] or holonomic quantum control [77].

Finally, we exhaustively analyzed some properties of the
oscillator necessary to realize the aforementioned applica-
tions. Despite that, the rich dynamical features present go
far beyond the ones presented. The presence of dissipative
phase transitions found in the balanced model [25], excep-
tional points in the Liouvillian spectrum [61,78], or symmetry
breaking [7,79] might be of further interest in the generalized
model.
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APPENDIX A: MEAN FIELD

The evolution of the expectation value of the operator â can
be used to characterize the mean-field dynamics. For that we
compute from the master equation (1) α̇ = tr(âρ̇) and approx-
imate 〈âx(â†)y〉 ∼ 〈â〉x〈â†〉y. This leads to the equation [22]

α̇ = −γ1

2
α − i�α − nη(α∗)n−1e−inθ − m

2
γm|α|2(m−1)α,

(A1)

which becomes exact in the thermodynamic limit of a large
number of excitations (|α|2 → ∞) [25].

The roots of Eq. (A1) determine the fixed points of the sys-
tem. Defining α = Reiφ , we obtain the mean-field amplitude

R2m−n = 2nηn

mγm
(A2)

of the n symmetrically distributed lobes forming the steady
state. This equation is only valid for 2m > n, which will be
the case studied in this paper, and is only valid for large
amplitudes R. In these conditions, the n fixed points are sym-
metrically distributed with angles θ j = (2 j + 1)π/n, where
j = 1, . . . , n.

A general solution for the amplitude R does not exist for all
powers n and m but, in some cases, we can get a more accurate
description by fixing one of the two exponents. Concretely, for
n = 2 and m > 1 we have

R2m−2 = 2

mγm

(√
(2η)2 + �2 − γ1

2

)
(A3)

and for m = n − 1 we get

R2n−4 = 1

[(n − 1)γm]2
{[2(nη)2 − (n − 1)γmγ1] +

√
[2(nη)2 − (n − 1)γmγ1]2 − [(n − 1)γm]2[γ 2

1 + (2�)2]}. (A4)

This expression is especially useful in the case (3,2) where the approximation in Eq. (A2) fails in the regimes considered in this
work.

The stability of the fixed points can be analyzed easily for γ1 = � = 0. In this case, the Jacobian matrix of the system is

J[R, φ] =
(

− 1
2γ1 − m(2m−1)

2 γmR2m−2 − n(n − 1)ηRn−2 cos nφ n2ηRn−1 sin nφ

n(n − 2)ηRn−3 sin nφ nηRn−2 cos nφ

)
. (A5)

Substituting Eq. (A2) and nφ = (2 j + 1)π gives

J[Rfp, φfp] =
(

− 1
2γ1 + nηRn−2(n − 2m) 0

0 −nηRn−2

)
,

(A6)

so if n − 2m < 0 the eigenvalues are negative and lead to
n stable fix points. This is the case for all pairs of (n, m)
presented in this paper.

It is important to note that the driving strength η necessary
to achieve a steady state with mean photon number 〈n̂〉ss

differs greatly for different values of the nonlinear degrees
(n, m). In general, as can be seen in Fig. 9, a two-order-of-
magnitude increase in η is needed for each additional photon
lost in the nonlinear dissipation degree. The effect is similar
to increasing γm [see Eq. (A2)]; photons are lost more rapidly
and so a higher η is necessary to stabilize the system [80].

Given that the value of η changes abruptly for the different
combinations of (n, m), we use 〈n̂〉ss as a suitable parametriza-
tion to show the results. This allows us to use the same scale
for all nonlinear degrees, but we must note that the actual
parameter being changed is η.
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FIG. 9. Strength of the driving needed to generate the lobes over
their mean photon number for (a) n = 3 and (b) n = 4.

APPENDIX B: FOUR-PHOTON DRIVING
AND SIX-PHOTON DISSIPATION

The oscillator with n = 4 and m = 6 behaves differently
from the other scenarios considered with four lobes. The dif-
ference is explained by the relation between the two nonlinear
degrees which have p = gcd(4, 6) = 2 and so p �= n. Hence,
in the absence of linear dissipation, a strong symmetry arises
with only two steady states of even and odd parity, in contrast,
for instance, to the n = m = 4 case, where there are four
steady states corresponding to four-cat states, each having a
different symmetry eigenvalue.

Notably, this also has consequences in the weak-symmetry
case. Two distinct regimes can be appreciated in Fig. 10
from the distribution of the Liouvillian spectrum. Initially,
for a small mean photon number, the fourth and fifth eigen-
values are close to each other and the largest eigenvalue
separation occurs between λ2 and λ3. Then, at around 〈n̂〉 ≈
20, a high-order exceptional point [78,81] occurs between
the eigenvalues λ2, λ3, and λ4 that makes the first two
complex conjugate (λ2 = λ∗

3) and the last one real. Beyond
the exceptional point, the separation between the fourth
and fifth eigenvalues becomes larger, indicating that a four-
dimensional metastable phase may arise for a very large
photon number. This makes sense since for small 〈n̂〉 the
driving strength η and the nonlinear dissipation rate γm are
comparable, so the symmetry that dominates is Z2. For larger
〈n̂〉, the driving strength is much larger than the nonlinear
dissipation rate, so the symmetry that dominates is Z4. In all

FIG. 10. Evolution of the first Liouvillian eigenvalues for in-
creasing mean photon number of the steady state. The first eigenvalue
is omitted as it vanishes exactly. The parameters are γ1 = 1.0, γ4 =
0.2, and � = 0.4.

FIG. 11. Time evolution of the expectation value of the parity
operator P̂2 containing only Fock states |a〉 where a mod 4 = 2. The
Wigner distribution of the initial states can be seen for (b) the parity-0
cat state |π0〉 and (c) the even-parity metastable state μ0.

cases, however, the spectral separation is small compared to
the other cases with n = m.

As we work in the regime of small mean photon number
〈n̂〉 < 20, only two metastable states are present. To character-
ize these states, we start by defining {|ψ j〉}3

j=0 as the squeezed
coherent states describing the four symmetrically distributed
lobes. Then the four four-cat states can be written as

|π0〉 = 1
2 (|ψ0〉 + |ψ1〉 + |ψ2〉 + |ψ3〉), (B1a)

|π1〉 = 1
2 (|ψ0〉 − i|ψ1〉 − |ψ2〉 + i|ψ3〉), (B1b)

|π2〉 = 1
2 (|ψ0〉 − |ψ1〉 + |ψ2〉 − |ψ3〉), (B1c)

|π3〉 = 1
2 (|ψ0〉 + i|ψ1〉 − |ψ2〉 − i|ψ3〉). (B1d)

Each of these states {|π j〉} has only Fock levels |a〉 with
a mod4 = j. Combining the two four-cat states with even and
odd parity, we obtain

|Ceven
± 〉 = 1√

2
(|ψ0〉 ± |ψ2〉), (B2a)

|Codd
± 〉 = 1√

2
(|ψ1〉 ± |ψ3〉), (B2b)

from which we can construct the two metastable states

μ0 = 1
2 (|Ceven

+ 〉〈Ceven
+ | + |Codd

+ 〉〈Codd
+ |), (B3a)

μ1 = 1
2 (|Ceven

− 〉〈Ceven
− | + |Codd

− 〉〈Codd
− |), (B3b)

where μ0 (μ1) has even (odd) parity and corresponds to the
steady states of the system in the limit γ1 → 0.

Figure 11 shows the time evolution of two initial states |π0〉
and μ0. The former is an even-parity four-cat state containing
only Fock states with a photon-number multiple of 4. The
latter is the metastable state with even parity (it is spanned
by all even Fock states). In Fig. 11(a) we plot the expectation
value of the parity operator P̂2 = ∑

a |2a + 2〉〈2a + 2|. This
operator allows us to see that the cat states (which are not
metastable states) lead to one of the two metastable states
specified in Eq. (B3). More specifically, initially the state |π0〉
has no component on the subspace spanned by the Fock states
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with modulus 2 but rapidly the state converges to 〈P̂2〉 = 1
2 ,

which we would expect for a state that has all the even modes
populated. On the other hand, the metastable state μ0 remains
in the same state for a longer time. Hence, the parity of
the initial cat state determines to which metastable state it
converges.

This has consequences in both applications we studied:
storage and quantum associative memory. First, in terms of
storage of quantum states, the memory should be regarded
as a two-dimensional system where the two metastable states
are the computational basis states. Thus, the relaxation and
dephasing times should be calculated accordingly. Second,

in terms of quantum associative memory, the number of
patterns that can be efficiently stored is only 2. Trying to
store four patterns in the squeezed lobes leads to a suc-
cess probability close to 1

4 because the states rapidly decay
to the manifold {μ0, μ1} and the posterior state discrimina-
tion is not capable of distinguishing between the two states.
Hence, a different encoding would be needed, for instance,
knowing that Fock states with even (odd) parity converge
to metastable states with even (odd) parity. We can use
this property to encode the initial states, which would al-
low us to use the system for pattern discrimination of two
memories.
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